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1. Introduction

Geman and Geman (1984) discussed a methodology for pixel image restoration which

depended on the idea of modelling the image by a Markov random field. A key feature of their

approach was the possible placing of "edge elements" at "line sites" between pixels of the image.

In Geman and Geman's approach, a prior distribution for the image is constructed by first

constructing a prior Gibbs distribution for the process of edge elements and then specifying the

prior for the pixels themselves conditional on the edge process. In the specification of the pixel

process, contiguous pixels separated by a line site at which an edge element is actually present

are not considered as neighbours, and so are allowed to have quite different grey levels without

incurring any penalty in the prior likelihood.

The edge process idea corresponds to the notion that the image is segmented into regions

over each of which its behaviour is relatively homogeneous, or at least is not subject to abrupt

changes; from one region to another, however, large differences in behaviour are possible. The

changes in behaviour may relate either to overall grey level or to more subtle properties such
as texture.

n this report we shall focus attention on the specification of the edge process, and show

how various geometrical insights su~gest how the prior Gibbs distribution should be constructed.

Our discussion will suggest relative costs for possible configurations somewhat different from

those proposed by Geman and Geman (1984). In addition IVrr scheme will provide methods for

M dealing with rectangular and irregular pixel patterns. . . ,

The present report is unashamedly speculative and theoretical. Practical implementation

and investigation of the ideas presented here is in progress and will be reported subsequently.

2. The Gibbs Log Likelihood as a Penalty Function

The Gibbs distribution approach constructs a prior likelihood for the edge process by first

defining a set of cliques of line sites. Each clique C consists of a small set of sites; in the Geman

and Geman paper the cliques are the collections of four line sites with a common vertex. The
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(no lines) (ending) (turn) (continuation) (branch) (crossing)

" Type 0 1 2 3 4 5
9.

0Figure 3.1: Possible types of configuration for regular edge process.

The costs ascribed to these configurations by Geman and Geman (1984) are given in Table

3.1.

Table 3.1: Costs of the configurations of Figure 3.1 used by Geman and Geman (1984)

Type of configuration 0 1 2 3 4 5

Cost V 0 2.7 1.8 0.9 1.8 2.7

We shall write vi for the cost of a configuration of type i, and explore the consequences of

various choices of vi.
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1(a) = c(0)Ic (M) = 1/(a,/). To deal with < a < 1, define 0o = tan-x(2a - 1) and rewrite

c(O) = h-1 v 3 sec Oo{cos 00 cos 0 + sin Oo sin 0}", (3.2)

= h-1 v3 sec Oo cos(0 - 0o).

Since for 1 < a < 1 we have 0 < 0o < M, it follows that, for a in this range, c(O) has a maximum

at Oo and that 1(a) = max {sec 00, sec (M - o)}. Hence 1(a) is minimized by setting 9=

The minimum value sec! = (4 - 2v2)1/ 2 . 1.082. Thus it follows that the minimax score

I(a) is optimized by setting 2a - 1 = tan M, which implies that a = (1 + tan 1) -/ .

If this value of a is used, then lines parallel to the lattice directions or those at 450 to these

k. directions will cost the same amount per unit length, while the most expensive lines will be

those at 221" to the axis directions, which will cost about 8% more. It is interesting to note

that the Geman-Geman value a = 2 yields 1(a) = 2v2 ; 2.83, a much larger value.

It can also be shown, by somewhat tedious algebra, that a = 1/V/2 also minimizes other

criteria of variability of c(O), for example the coefficient of variation of c(O) with 0 uniformly

distributed over [0, M].

The arguments of this section make it possible to settle on a charge for configurations of

types 2 and 3. Suppose it is intended to penalize boundaries in the underlying picture by an

amount , per unit length. In an ideal world we would like to choose v2 and v3 in (3.1) to ensure

that c(O) P 3 for all 0. As we have seen, this cannot be attained exactly for all 0, but setting
41/2

v2/v 3 = 2/ will minimize the variability of c(0) as 0 varies. Having settled the ratio v2/v 3 ,

it is natural to choose v3 to ensure that (2r)- 1 f c(O)dO = j3. By simple algebra, from (3.2),

(21r)-' c(O)dO = 4.r - 1  h-'v 3 sec (r) cos (0 - ') dO

= 8w--h1 1 v3 tan (h) = h- - 1

where the constant k = 1.r/tan () : 0.948.

It follows that setting V3 = kj3h and v2 - 2-1 /2k3h will ensure that, while c(0)/3 is only

exactly 1 for certain values of 0, it will be the case that c(0)/P3 lies between 0.948 and 1.027 for

all 0 and furthermore that the average value of c(O) over (uniformly distributed) 0 is precisely
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Let nb be the number of branches and nc the number of crossings. It is immediate that

n., = nb + nc. (3.3)

In order to count the number of boundary sections, notice that three boundary sections

meet at each branch and four at each crossing. Thus the number of ends of boundary sections

in 3nb + 4n,, and since each boundary section has two ends, we have

n, = 2nb + 2n,. (3.4)

Substituting (3.3) and (3.4) into (3.5) yields

n f =1 + 1n6 + n,. (3.5)

Formula (3.5) gives a natural price to be charged for branches and crossings. If it is desired to

penalize an amount p for each region in the pattern, then one should charge p for each branch

point and p for each crossing. Of course, if the edge configuration gives rise to regions that

are not simply connected, then the number of regions will no longer be given by (3.5), and the

charge (Inb + n,) p will have to be considered in its own right as a penalty for the complexity

of the pattern.

3.3. Endings

A pattern made up of disjoint regions cannot, of course, have a configuration of edges

containing any endings at all. Therefore the philosophy that we are adopting would naturally

led to an infinite charge for configurations of type 1 in Figure 1. However to set any penalty value

to infinity leads to algorithmic difficulties in using the model in practice, because it yields a prior

model for the edge process under which some configurations have probability zero. This violates

the condition of positive probability for all configurations under which the theory and practice

of Markov random fields is developed; see, for example, Geman and Geman (1984, Section 4).

In any case, it seems excessively dogmatic to exclude certain configurations completely, since

there may be good physical reasons for a boundary to peter out in the middle of a region.

Therefore an approach that is likely to be more satisfactory is to ascribe a cost A to each "loose

end" in the boundary pattern, where A is set to a relatively large value. Precisely how large

9
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3.5. Incomplete cliques

At the edge of the pattern, there will not be four line sites meeting at each vertex. A great

advantage of our methodology is tht it makes it possible very easily to find the appropriate

charge for the possible configurations that arise. Consider first the case where the window

A
A~ eG3P 014 rKLW

Figure 3.3: A simple configuration at the edge of the window.

40

is locally aligned with the pixel direction, as in Figure 3.3. The vertex A will be associated

with a clique containing exactly one line site; if the edge shown in Figure 3.3 is present thenEl the point A will be a branch, and so the appropriate charge is 1p, while if the edge is absent

*i the appropriate charge is 0.

A rarer kind of incomplete clique arises as in Figure 3.4.

IL75 10 ni

Figure 3.4: Incomplete cliques comprising three pixels.

0.'

The case where just a single edge is present will, as before, count as a branch point and so

should be charged 1p, while the configuration containing both edges contributes two boundary

section ends and so should be charged p, provided the pixels numbered 1 and 3 are not to be

regarded as neighbours.
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Figure 4.2: Configurations for a vertex of degree 3.

Although, in contrast with the case of square pixels, there are fewer types of configuration

to consider, the irregularity of the pixels means that it is no longer necessarily the case that all

configurations of a particular type should attract the same penalty.

The first stage in the assignment of costs to various configurations is to use the same

arguments as in the square lattice case to deal with configurations of types 0, 1 and 3, which are

charged 0, A and lp respectively. It remains to ascribe costs to "continuation" configurations.

In order to do this, construct a dual edge pattern by placing a point in each cell of the original

pixel array, and joining points if their corresponding pixels have some boundary in common.

The vertices of the dual array can, in principle, be placed anywhere in their corresponding pixels,

but in practice they will have a natural position. For example if the pixels are constructed as

the Voronoi polygons of a point process then the points of the process will themselves be the

vertices of the dual array.

Our assumption that exactly three pixels meet at each vertex of the original tessellation

implies that the dual edge pattern will be a triangulation of the plane. In the case of the square

pixel array the cost of "continuation" configurations was determined by considering a pattern

with a single long straight edge, suitably discretized to fit the pixel pattern. In the more general

case, it is no longer quite so clear how this discretization should be performed. One natural

way to proceed is to prescribe that an edge segment will be present in the edge process if and

only if the corresponding dual edge is intersected by the straight line boundary. We assume, if

13



derive possible ways of penalizing for the "continuation" configuration bc given by the presence

of the edges dual to b and c and the absence of the edge dual to a. These costs will be based

on the general idea that boundaries should cost an amount 0 per unit length; for notational

simplicity we shall assume henceforth that 1 1, and note that the costs obtained should be

multiplied by 3 in the general case.

Let I be a random line in the plane, random in a sense that will be made precise below.

Let IT be the length of the intersection of e with the triangle T. Then our first possible cost

for the continuation configuration bc is

V1 = E(iT I I intersects b and c).

The motivation for this definition is clear. Summing IT over all triangles T gives the length of

the line 1. neglecting end effects, and, when deciding how much to charge for the configuration

bc, we can only take note of information given by the current clique. Hence, by standard

statistical theory, the natural estimator of IT is the posterior expectation V of IT given all the

information available.

A second possible cost is given in a slightly less transparent way. Let I be the projected

length of the side a on the line 1; this length is to be counted as negative if, as in Figure 4.4, the

half of I that intersects b and c makes an angle of more than f with a. The second proposed

Cos Vs

V2 = E (11, I1 intersects b and c)
S2
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Figure 4.5: A random line intersecting the dual triangle.

For such 0, A will intersect c and b if and only if it intersects c. The set of lines at orientation

0 that intersect c make up a strip of width c sin(B - 0) and so we have

f(O) ccsin(B-0) for 0<0<B.

For -C < 0 < 0, a similar argument yields

f(O)ocbsin(C+O) for 0<-O<C.

To calculate the constant of proportionality, we note that

B 0
csin(B - 0)d9 + b sin(C + O)dO

= c sino5 dq+b ] sin 0 dq5

= b + c - c cosB - b cos C

=b + c - a,

and hence we have

c sin(B-0)/(b+c-a) 0<0< B

f(0) - bsin(C+0)/(b+c-a) -C<0<0

40 otherwise.

To calculate V1, consider first 0 > 0. Given that 0 = 0 and-that A intersects c and b, the

expected value of t T is half its value when 0 = 0 and A passes through B. This length is, by

17



expressed. Given that E = 0, we have L. = a cos 0, and hence

V2 = !a] cos 0 f(O)dOCi B C (4.3)
= (b + c - a) - ' { accosesin(B - 0)d0 + j labcose'sin(C -')de'

The first integral in (4.3) is equal to

lac{sin B + sin(B - 20)}dO = lac B sin B =AB

where A is the area of the triangle T, and hence

V2- 1(B + C)AI(b + c - a) (4.4)

Thus it is clear that the formula for V2 is very simple and more appealing than that for V1.

5. Regular Arrays Revisited

In the last section we defined two different ways of obtaining penalties for continuation
configurations. One of these was based on the length of the intersection of a region in the dual

triangulation with a random line, and the other on the length of projection of such a region on

a random line. It turned out that the projection penalty gave a much more elegant result. In

this section, we shall apply the intersection and projection ideas to the regular square lattice

considered earlier.

Our aim is to obtain costs for the "turn" and "continuation" configurations as illustrated

in Figure 3.1. The dual of the square lattice is itself a square lattice, and the part of the dual

corresponding to a clique is a single square of side h as in Figure 5.1.
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will satisfy
-,:. : A(O) --(2 - v/I)- sin (M - <O) -i 0 < S

4 4 4

using simple calculus to find the constant of proportionality. The intersection length s is equal
to h sec , and hence the expected intersection length is

r/4 h sec Ofi(9)dO = Ii/4 (1- 1v'-) sec 0 sin ( -O) dO
. J - / 4 J

7r/4 e 01/

= (v'2- -1)- 1 / f (1- tan)d= (v2-- 1)-'[0-log sec0"

= (v'- I)-' (M - log2).

. Thus the "intersection" penalty for a configuration of type 3 in Figure 3.1 would be
(I- 1log2)-

h/(v/ - 1) 1.06 h.

. ., To find the "projection" penalty for such a configuration, note that the appropriate gen-

eralization of the projection argument given in Section 4 is to take as penalty 1 (projection of

AB and DC) because both AB and DC will be edges of the irregular strip formed by the union

of those dual pixels intersected by t. Both AB and DC have projection length h cos 0 on e. and

so the "projection" penalty for a configuration of type 3 will be

h1 hcos Of, (0) dO= (1- h cos 0 sin (-) dO
, J-r/4 2V4 O1

= (2 - v2)-lh {sin r - sin (20 - )}d

. irh/(i/i- 1) = kh - 0.95 h

where k is defined exactly as in Section 3.

To find the penalties for "turn" configurations, the work of Section 4 can be used almost

directly, by noticing that both the "intersection" and "projection" penalties will be the same

as those obtained there, for the case of a line crossing the two short sides of an isosceles right-

angled triangle. Thus we set a = hV2-, b = c = h, B = C = and A = in the formulas (4.2)

and (4.4).

We obtain as the intersection penalty for the turn configuration hlog2/(2 - v'2) z:

0.59 h and for the projection penalty !rh/(2v'2) = 2- 1 2 kh ;. 0.67 h. It is noteworthy that
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give as the cost of a "continuation" as shown in Figure 6.1 the quantity

hi fo cos 0 sin(Oo - O)dO/ oo sin(O - Oo)d9

= 1h, {sin 0o + sin(Oo - 20)}d8 sin 0' dO'

= 1hOo sin 00/(1 - cos 00). (6.1)

The other type of continuation, consisting of two edges of length h2, will cost an amount

obtained by substituting h. for h, and ,r -00 for 0o in (6.1), viz. h2 (i- - 00) cosOo/(1 - sin 00).

', The general idea of evolving penalties for continuation configurations based on a condi-

tional expected projection length can of course be extended to more general polygons in the

dual tessellation. The advantage of the projection approach is that consistent penalties can be

written down for cliques of different kinds that appear in diferent parts of the same pattern.

Thus the circular pixel grid shown in Figure 4.1contains some vertices of degree 3,which can

be dealt with using the formulas of Section 4, and some of degree 4 whose dual polygons in the

dual tessellation are, for all practical purposes, rectangles - which are treated in this section.
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